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Abstract. Spinodal instability in nuclear matter and finite nuclei is investigated. This instability occurs
in the low-density region of the phase diagram. The thermodynamical and dynamical analysis is based on
Landau theory of Fermi liquids. It is shown that asymmetric nuclear matter can be characterized by a
unique spinodal region, defined by the instability against isoscalar-like fluctuation, as in symmetric nuclear
matter. Everywhere in this density region the system is stable against isovector-like fluctuations related to
the species separation tendency. Nevertheless, this instability in asymmetric nuclear matter induces isospin
distillation leading to a more symmetric liquid phase and a more neutron-rich gas phase.

PACS. 21.65.+f Nuclear matter – 25.70.Pq Multifragment emission and correlations – 21.60.Ev Collective
models

1 Introduction

The production of fragments represents an important dis-
sipation mechanism in heavy-ion reactions at intermediate
energies. A relevant phenomenon is the liquid-gas phase
transition, very often invoked in discussing the nuclear
multifragmentation. In this analogy, however, one should
be aware also of the differences due to Coulomb, finite-size
or quantum effects.

For phase transitions in macroscopic systems, the co-
existence regions, corresponding to areas thermodynami-
cally forbidden for one single phase, exhibit general fea-
tures such as metastabilities or instabilities. At variance
with the situation for macroscopic systems, where the ob-
servation time scale is much greater than the time scales
of the microscopic processes that lead to drop (bubble)
formation (even more exceptional is the study of critical
points where the slowing-down phenomena require days of
expectations for equilibration), in heavy-ions collisions the
reaction times can be comparable to the fragment forma-
tion time which is of relevance for discussing about the ki-
netics of the phase transition. The violent collision and fast
expansion may quench the system inside the instability re-
gion of the phase diagram. Moreover, a binary system, in-
cluding asymmetric nuclear matter (ANM) (see [1]), man-
ifest a richer thermodynamical behaviour, since it has to
accommodate one more conservation law.

In this paper we will discuss first the nature of the
instabilities and of the related fluctuations in such sys-
tems. Then, in sect. 3, we will describe the kinetics of
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phase transition in ANM both in the linear and nonlinear
regime. Finally, in the last section we will focus on the rel-
evance of these results on nuclear multifragmentation and
neck fragmentation in heavy-ion collisions at intermediate
energies.

2 Instabilities and fluctuations in ANM

2.1 Thermodynamical approach

One-component systems may become unstable against
density fluctuations as the result of the mean attractive
interaction between constituents. In symmetric binary sys-
tems, like symmetric nuclear matter (SNM), one may
encounter two kinds of density fluctuations: i) isoscalar,
when the densities of the two components oscillate in
phase with equal amplitude, ii) isovector when the two
densities fluctuate still with equal amplitude but out of
phase. Then mechanical instability is associated with in-
stability against isoscalar fluctuations leading to cluster
formation while chemical instability is related to instabil-
ity against isovector fluctuations, leading to species sepa-
ration. We will show in the following that in ANM, there is
no longer a one-to-one correspondence between isoscalar
(respectively isovector) fluctuations and mechanical (re-
spectively chemical) instability. An appropriate frame-
work for the study of instabilities is provided by the Fermi-
liquid theory [2], which has been applied, for instance, to
symmetric binary systems as SNM (the two components
being protons and neutrons) [3], the liquid 3He (spin-up
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and spin-down components) [4,5] and proto-neutron stars
to calculate neutrino propagation [6].

The starting point is an extension to the asymmetric
case of the formalism introduced in [4]. The distribution
functions for protons and neutrons are

fq
(

εqp
)

= Θ
(

µq − εqp
)

, q = n, p, (1)

where µq are the corresponding chemical potentials. The
nucleon interaction is characterized by the Landau param-
eters:

F q1q2 = Nq1V
2 δ2H

δfq1δfq2
= Nq1

δ2H

δρq1δρq2
, (2)

Nq(T ) =

∫ −2 dp
(2πh̄)3

∂fq(T )

∂εqp
, (3)

where H is the energy density, V is the volume and Nq

is the single-particle level density at the Fermi energy. At
T = 0 this reduces to

Nq(0) = mpF,q/
(

π2h̄3
)

= 3ρq/
(

2εF,q
)

,

where pF,q and εF,q are the Fermi momentum and Fermi
energy of the q-component. Thermodynamical stability for
T = 0 requires the energy of the system to be an abso-
lute minimum for the undistorted distribution functions,
so that the relation

δH − µpδρp − µnδρn > 0 (4)

is satisfied when we deform proton and neutron Fermi
seas.

Only monopolar deformations will be taken into ac-
count, since we consider here momentum-independent in-
teractions, so that F q1q2

l=0 are the only non-zero Landau
parameters. In fact, for momentum-independent interac-
tions, all the information on all possible instabilities of
the system is obtained just considering density variations.
However, one should keep in mind that in the actual dy-
namical evolution of an unstable system in general one
observes deformations of the Fermi sphere, hence the di-
rection taken by the system in the dynamical evolution
is not necessarily the most unstable one defined by the
thermodynamical analysis.

Then, up to second order in the variations, the condi-
tion eq. (4) becomes

δH−µpδρp−µnδρn=
1

2

(

aδρp
2+bδρn

2+cδρpδρn
)

>0, (5)

where

a = Np(0)(1 + F pp
0 ); b = Nn(0)(1 + Fnn

0 );

c = Np(0)F
pn
0 +Nn(0)F

np
0 = 2Np(0)F

pn
0 . (6)

The r.h.s. of eq. (5) is diagonalized by the following trans-
formation:

u = cosβ δρp + sinβ δρn,

v = − sinβ δρp + cosβ δρn, (7)

where the mixing angle 0 ≤ β ≤ π/2 is given by

tg 2β=
c

a− b
=

Np(0)F
pn
0 +Nn(0)F

np
0

Np(0)(1 + F pp
0 )−Nn(0)(1 + Fnn

0 )
. (8)

Then eq. (5) takes the form

δH − µpδρp − µnδρn = Xu2 + Y v2 > 0, (9)

where

X =
1

2

(

a+ b+ sign(c)
√

(a− b)2 + c2
)

≡ (Np(0) +Nn(0))

2

(

1 + F s
0g

)

(10)

and

Y =
1

2

(

a+ b− sign(c)
√

(a− b)2 + c2
)

≡ (Np(0) +Nn(0))

2

(

1 + F a
0g

)

, (11)

defining the new generalized Landau parameters F s,a
0g .

Hence, thanks to the rotation eq. (7), it is possible to
separate the total variation eq. (4) into two independent
contributions, called the “normal” modes, and character-
ized by the “mixing angle” β, which depends on the den-
sity of states and the details of the interaction. Thus, the
thermodynamical stability requires X > 0 and Y > 0.
Equivalently, the following conditions have to be fulfilled:

1 + F s
0g > 0 and 1 + F a

0g > 0. (12)

They represent Migdal-Pomeranchuk stability conditions
extended to asymmetric binary systems.

The new stability conditions, eq. (12), are equivalent to
mechanical and chemical stability of a thermodynamical
state [7], i.e.

(

∂P

∂ρ

)

T,y

> 0 and

(

∂µp
∂y

)

T,P

> 0, (13)

where P is the pressure and y the proton fraction. In fact,
mechanical and chemical stability are very general condi-
tions, deduced by requiring that the principal curvatures
of thermodynamical potential surfaces, such as the free
energy (or the entropy) with respect to the extensive vari-
ables are positive (negative).

It has been argued that the mechanical and chemical
instability lead to very different phenomenons: the chem-
ical instability with the concentration as order parameter
and the mechanical instability for which the total den-
sity plays the role of a second-order parameter [8,9]. In
the following, we will show that spinodal instability and
phase transition in ANM should be instead discussed in
terms of isoscalar- and isovector-like instabilities. In the
case discussed here, it can be proved that [10]:

XY = Np(0)Nn(0)
[

(1 + Fnn
0 )(1 + F pp

0 )− Fnp
0 F pn

0

]

=
[Np(0)Nn(0)]

2

(1− y)ρ2

(

∂P

∂ρ

)

T,y

(

∂µp
∂y

)

T,P

(14)



V. Baran and J. Margueron: Instabilities in nuclear matter and finite nuclei 143

and
(

∂P

∂ρ

)

T,y

=
ρy(1− y)

Np(0)Nn(0)

(

t a+
1

t
b+ c

)

∝X
(√

t cosβ+
1√
t
sinβ

)2

+Y

(√
t sinβ− 1√

t
cosβ

)2

with t =
y

1− y

Nn(0)

Np(0)
. (15)

Let us assume that in the density range we are con-
sidering the quantities a and b remain positive. In this
way one can study the effect of the interaction between
the two components, given by c, on the instabilities of
the mixture. If c < 0, i.e. for an attractive interaction be-
tween the two components, from eq. (11) one sees that the
system is stable against isovector-like fluctuations. It be-
comes isoscalar unstable if c < −2

√
ab (see eq. (10)). How-

ever thermodynamically this instability against isoscalar-
like fluctuations will show up as a chemical instability if
(−ta − b/t) < c < −2

√
ab or as a mechanical instabil-

ity if c < (−ta − b/t) < −2
√
ab (see eq. (15)). This last

observation is very interesting: it tells us that the nature
of the thermodynamically instabilities can be related to
the relative strength of the various interactions among the
species. In other words, if it is possible to determine exper-
imentally for a binary systems the signs of ( ∂P

∂ρ
)T,y and/or

(
∂µp

∂y
)T,P we can learn about the inequalities, at a given

density, between species interactions.
On the other hand, the distinction between the two

kinds of instability (mechanical and chemical) is not re-
ally relevant regarding the nature of unstable fluctuations,
being it essentially the same, i.e. isoscalar-like. The rele-
vant instability region is defined in terms of instabilities
against isoscalar fluctuations and we can speak, therefore,
about a unique spinodal region. If c > 0, i.e. when the
interaction between the components is repulsive, the ther-
modynamical state is always stable against isoscalar-like
fluctuation, but can be isovector unstable if c > 2

√
ab.

Since with our choices the system is mechanically stable
(a, b, c > 0, see eq. (15)), the isovector instability is now
always associated with chemical instability. Such situation
will lead to a component separation of the liquid mixture.
In this framework, a complete analysis of the instabilities
of any binary system can be performed, in connection to
signs, strengths and density dependence of the interac-
tions.

2.2 Asymmetric nuclear-matter case

We show now quantitative calculations for asymmetric nu-
clear matter which illustrate the previous general discus-
sion on instabilities. Let us consider a potential energy
density of Skyrme type [11,12],

Hpot(ρn, ρp) =
A

2

(ρn + ρp)
2

ρ0
+

B

α+ 2

(ρn + ρp)
α+2

ρα+1
0

+

(

C1 − C2

(

ρ

ρ0

)α)
(ρn − ρp)

2

ρ0
, (16)

Fig. 1. Spinodal line corresponding to isoscalar-like insta-
bility of asymmetric nuclear matter (circles) and mechanical
instability (crosses) for three proton fractions: y = 0.5 (a),
y = 0.25 (b), y = 0.1 (c). The figure is taken from [10].

where ρ0 = 0.16 fm−3 is the nuclear saturation density.
The values of the parameters A = −356.8MeV, B =
303.9MeV, α = 1/6, C1 = 125MeV, C2 = 93.5MeV are
adjusted to reproduce the saturation properties of sym-
metric nuclear matter and the symmetry energy coeffi-
cient.

We focus on the low-density region, where phase tran-
sitions of the liquid-gas type are expected to happen, in
agreement with the experimental evidences of multifrag-
mentation [13,14]. Since a, b > 0 and c < 0, we deal only
with instability against isoscalar-like fluctuations, as for
symmetric nuclear matter. In fig. 1 the circles represent
the spinodal line corresponding to isoscalar-like instability,
as defined above, for three values of the proton fraction.
For asymmetric matter, y < 0.5, under this border one
encounters either chemical instability, in the region be-
tween the two lines, or mechanical instability, under the
inner line (crosses). The latter is defined by the set of val-
ues (ρ, T ) for which (∂P

∂ρ
)T,y = 0. We observe that the

line defining chemical instability is more robust against
the variation of the proton fraction in comparison to that
defining mechanical instability: reducing the proton frac-
tion makes it energetically less and less favorable for the
system to break into clusters with the same initial asym-
metry. However, we stress again the unique nature of the
isoscalar-like instability. The change from the chemical to
the mechanical character along this border line is not very
meaningful and does not affect the properties of the sys-
tem.

Let us now discuss the generality of the conclusions
by comparing several models for the nuclear interaction.
Indeed, the spinodal contours predicted by several models
exhibit important differences (see fig. 2). In the case of
SLy230a force (as well as SGII, D1P), the total density
at which spinodal instability appears decreases when the
asymmetry increases whereas for SIII (as well as D1, D1S)
it increases up to large asymmetry and finally decreases.
Despite the observed differences between the models, we
observe that all forces which fulfill the global requirement
that they reproduce the symmetric nuclear-matter (SNM)
equation of state as well as the pure neutron matter cal-
culations lead to the same curvature of the spinodal re-
gion [15].
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Fig. 2. Projection of the spinodal contour in the density plane
for several effective interactions like Skyrme (SLy230a, SGII,
SIII) and Gogny (D1, D1S, D1P). The figure is taken from [15].

Fig. 3. Projection of the iso-eigen values on the density plane
for Slya (left) and D1P (right). The arrows indicate the direc-
tion of instability. The mechanical instability is also indicated
(dashed line). The figure is taken from [15].

Let us now focus on the direction of the instability. If
the eigenvector associated with the unstable mode is along
y = ρp/ρ = const then the instability does not change the
proton fraction. For symmetry reasons pure isoscalar and
isovector modes appear only for SNM so it is interesting to
introduce a generalization of isoscalar-like and isovector-
like modes by considering if the protons and neutrons
move in phase (δρnδρp > 0) or out of phase (δρnδρp < 0).
Figure 3 shows the direction of instabilities along the spin-
odal border and some iso-instability lines. We observe that
instability is always almost along the ρ-axis meaning that
it is dominated by total density fluctuations even for large
asymmetries. The instability direction is between the y =
const line and the ρ-direction. This shows that the unsta-
ble direction is of isoscalar nature as expected from the
attractive proton-neutron interaction. The total density
is, therefore, the dominant contribution to the order pa-

rameter showing that the transition is between two phases
having different densities (i.e. liquid-gas phase transition).
The angle with the ρ-axis is almost constant along a con-
stant y line. This means that as the matter enters in the
spinodal zone and then dives into it, there are no dra-
matic changes in the instability direction which remains
essentially a density fluctuation. Moreover, the unstable
eigenvector drives the dense phase (i.e. the liquid) toward
a more symmetric point in the density plane. By parti-
cle conservation, the gas phase will be more asymmetric
leading to the fractionation phenomenon.

We want to stress that those qualitative conclusions
are very robust and have been reached for all the Skyrme
and Gogny forces we have tested (SGII, SkM∗, RATP, D1,
D1S, D1P) including the most recent one (SLy230a, D1P)
as well as the original one (like SIII, D1).

We eventually point out that also various relativistic
mean-field hadron models were involved for the study of
the phase transition from liquid to gas phases in ANM [8,
16,17]. It was concluded that the largest differences be-
tween different parameterizations, regarding unstable be-
haviour in the low-density region, occur at finite temper-
ature and in the high isospin asymmetry region.

3 The kinetics of phase transition in ANM

3.1 The linear response

The dynamical behaviour of a two-fluid system can
be described, at the semi-classical level, by considering
two Vlasov equations, for neutrons and protons in the
nuclear-matter case [11,12,18,19], coupled through the
self-consistent nuclear field

∂fq(r,p, t)

∂t
+

p

m

∂fq
∂r
−∂Uq(r, t)

∂r

∂fq
∂p

=0, q=n, p. (17)

For simplicity effective mass corrections are neglected.
In fact, in the low-density region, of interest for our anal-
ysis of spinodal instabilities, effective mass corrections
should not be large.

Uq(r, t) is the self-consistent mean-field potential in a
Skyrme-like form [11,12]:

Uq =
δHpot

δρq
= A

(

ρ

ρ0

)

+B

(

ρ

ρ0

)α+1

+ C

(

ρ3

ρ0

)

τq

+
1

2

dC(ρ)

dρ

ρ2
3

ρ0
−D4ρ+D3τq4ρ3, (18)

where

Hpot(ρn, ρp) =
A

2

ρ2

ρ0
+

B

α+ 2

ρα+2

ρα+1
0

+
C(ρ)

2

ρ2
3

ρ0
+
D

2
(∇ρ)2 − D3

2
(∇ρ3)

2 (19)

is the potential energy density (see eq. (16)), where also
surface terms are included; ρ = ρn + ρp and ρ3 = ρn −
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ρp are, respectively, the total (isoscalar) and the relative
(isovector) density; τq = +1 (q = n), −1 (q = p).

The value of the parameter D = 130MeV · fm5 is ad-
justed to reproduce the surface energy coefficient in the
Bethe-Weizsäcker mass formula asurf = 18.6MeV. The
value D3 = 40MeV · fm5 ∼ D/3 is chosen according to
ref. [20], and is also close to the value D3 = 34MeV · fm5

given by the SKM∗ interaction [21].
Let us now discuss the linear response analysis to the

Vlasov eqs. (17), corresponding to a semiclassical RPA ap-
proach. For a small amplitude perturbation of the distri-
bution functions fq(r,p, t), periodic in time, δfq(r,p, t) ∼
exp(−iωt), eqs. (17) can be linearized leading to the fol-
lowing form:

−iωδfq +
p

m

∂δfq
∂r

− ∂U
(0)
q

∂r

∂δfq
∂p

− ∂δUq

∂r

∂f
(0)
q

∂p
= 0, (20)

where the superscript (0) labels stationary values and δUq

is the dynamical component of the mean-field potential.

The unperturbed distribution function f
(0)
q is a Fermi dis-

tribution at finite temperature

f (0)
q

(

εqp
)

=
1

exp (εqp − µq)/T + 1
. (21)

Since we are dealing with nuclear matter,∇rU
(0)
q =0 in

eq. (20) and δfq ∝ exp(−iωt+ikr). Following the standard
Landau procedure [5,11], one can derive from eqs. (20) the
following system of two equations for neutron and proton
density perturbations:

[

1 + Fnn
0 χn

]

δρn +
[

Fnp
0 χn

]

δρp = 0, (22)
[

F pn
0 χp

]

δρn +
[

1 + F pp
0 χp

]

δρp = 0, (23)

where

χq(ω,k) =
1

Nq(T )

∫

2 dp

(2πh̄)3
kv

ω + i0− kv

∂f
(0)
q

∂εqp
, (24)

is the long-wavelength limit of the Lindhard function [5],
v = p/m and

F q1q2
0 (k) = Nq1(T )

δUq1

δρq2
, q1 = n, p, q2 = n, p (25)

are the usual zero-order Landau parameters, as already
introduced in eq. (3), where now the k-dependence is due
to the presence of space derivatives in the potentials (see
eq. (18)). For the particular choice of potentials given by
eq. (18), the Landau parameters are expressed as

F q1q2
0 (k) = Nq1(T )

[

A

ρ0
+ (α+ 1)B

ρα

ρα+1
0

+Dk2

+

(

C

ρ0
−D′k2

)

τq1τq2+
dC

dρ

ρ′

ρ0
(τq1+τq2)+

d2C

dρ2

ρ′2

2ρ0

]

. (26)

Multiplying the first equation by N−1
n χp and the second

one byN−1
p χn, we are led to define the following functions:

a(k, ω) = N−1
p

(

1 + F pp
0 χp

)

χn;

b(k, ω) = N−1
n

(

1 + Fnn
0 χn

)

χp;

c(k, ω) =
(

N−1
p F pn

0 +N−1
n Fnp

0

)

χnχp =

2N−1
p F pn

0 χnχp, (27)

in some analogy with eqs. (6) and we obtain the following
system of equations:

aδρp + c/2 δρn = 0;

c/2 δρp + bδρn = 0. (28)

The system can be diagonalized with eigenvalues λs and
λi, solutions of the equation:

(a− λs,i)(b− λs,i)− c2/4 = 0.

Formally we obtain for λs,i the same expressions as given
in eqs. (10), (11) for X and Y , but now a, b and c de-
pend on ω. The unstable solutions for ω are obtained
by solving the equations: λs = 0 (for isoscalar-like fluc-
tuations), λi = 0 (for isovector-like fluctuations). This
problem is completely equivalent to solve the equation:
c2(ω, k) = 4a(ω, k)b(ω, k), i.e. the dispersion relation

(

1 + Fnn
0 χn

)(

1 + F pp
0 χp

)

− Fnp
0 F pn

0 χnχp = 0, (29)

that is also obtained directly by imposing the determinant
of the system of eqs. (22), (23) equal to zero.

The dispersion relation is quadratic in ω and one finds
two independent solutions (isoscalar-like and isovector-like
solutions): ω2

s and ω2
i . Then the structure of the eigen-

modes can be determined and one finds

δρp/δρn = −2b(ωs, k)/c(ωs, k),

for the isoscalar-like modes and

δρp/δρn = −2b(ωi, k)/c(ωi, k),

for isovector-like oscillations. However, it is important to
notice that the corresponding angles βs,i are not equal to
the angle β determined in the thermodynamical analysis,
eq. (8), because of the ω-dependence in a, b and c. They
only coincide with β when ω = 0 (and thus χn,p = 1), i.e.
at the border of the unstable region.

The dispersion relation, eq. (29), have been solved
for various choices of the initial density, temperature and
asymmetry of nuclear matter. Figure 4 reports the growth
rate Γ = Imω(k) as a function of the wave vector k,
for three situations inside the spinodal region. Results are
shown for symmetric (I = 0) and asymmetric (I = 0.5)
nuclear matter.

The growth rate has a maximum Γ0 = 0.01–0.03 c/fm
corresponding to a wave vector value around k0 = 0.5–
1 fm−1 and becomes equal to zero at k ' 1.5k0, due to
the k-dependence of the Landau parameters, as discussed
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above. One can see also that instabilities are reduced when
increasing the temperature, an effect also present in the
symmetric N = Z case [22–24]. At larger initial asymme-
try the development of the spinodal instabilities is slower,
the maximum of the growth rate decreases. One should
expect also an increase of the size of the produced frag-
ments, decrease of the wave number corresponding to the
maximum growth rate. From the long-dashed curves of
fig. 4 we can predict the asymmetry effects to be more
pronounced at higher temperature, when in fact the sys-
tem is closer to the boundary of the spinodal region.

A full quantal investigation of spinodal instabilities
and the related phase diagram was applied to finite nu-
clear systems, corresponding to Ca and Sn isotopes [25].
The frequencies and form factors of the unstable collec-
tive modes of an excited expanded system were obtained
within the linearized time-dependent Hartree-Fock expan-
sion, corresponding to RPA approximation. Dominant fea-
tures are influenced by the quantum nature of the drop.
So the first mode to become unstable is the low-lying oc-
tupole vibration. Diluted systems are unstable against low
multipole deformations of the surface. It was shown that
also in this case the instabilities are mostly of isoscalar na-
ture, with an isovector component leading to isospin dis-
tillation, in agreement with the previous predictions for
the nuclear-matter case [10].

3.2 Spinodal decomposition: numerical simulations

The previous analytical study is restricted to the onset of
fragmentation, and related isospin distillation, in nuclear
matter, in a linearized approach. Numerical calculations
have been also performed in order to study all stages of

Fig. 4. Growth rates of instabilities as a function of the wave
vector, as calculated from the dispersion relation eq. (29), for
three situations inside the spinodal region. Lines are labeled
with the asymmetry value I. The insert shows the asymmetry
of the perturbation δρI/δρS , as a function of the asymmetry I
of the initially uniform system, for the most unstable mode, in
the case ρ = 0.4ρ0, T = 5MeV. The figure is taken from [26].

the fragment formation process [12,27]. We report on the
results of ref. [12] where the same effective Skyrme inter-
actions have been used.

In the numerical approach the dynamical response of
nuclear matter is studied in a cubic box of size L impos-
ing periodic boundary conditions. The Landau-Vlasov dy-
namics is simulated following a phase-space test particle
method, using Gaussian wave packets [28–30]. The dy-
namics of nucleon-nucleon collisions is included by solving
the Boltzmann-Nordheim collision integral using a Monte
Carlo method [29]. The width of the Gaussians is chosen
in order to correctly reproduce the surface energy value in
finite systems. In this way, a cut-off appears in the short-
wavelength unstable modes, preventing the formation of
too small, unphysical, clusters [22]. The calculations are
performed using 80 Gaussians per nucleon and the num-
ber of nucleons inside the box is fixed in order to reach
the initial uniform density value. An initial temperature
is introduced by distributing the test particle momenta
according to a Fermi distribution.

We have followed the space-time evolution of test par-
ticles in a cubic box with side L = 24 fm for three values of
the initial asymmetry I = 0, 0.25 and 0.5, at initial density
ρ(0) = 0.06 fm−3 ' 0.4ρ0 and temperature T = 5MeV.
The initial density perturbation is created automatically
due to the random choice of test particle positions.

The spinodal decomposition mechanism leads to a
fast formation of the liquid (high density) and gaseous
(low density) phases in the matter. Indeed this dynam-
ical mechanism of clustering will roughly end when the
variance saturates [31], i.e. around 250 fm/c in the asym-
metric cases. We can also discuss the “chemistry” of the
liquid-phase formation. In fig. 5 we report the time evo-
lution of neutron (thick histogram in fig. 5a) and proton
(thin histogram in fig. 5a) abundances and of asymmetry
(fig. 5b) in various density bins. The dashed lines, respec-
tively, shows the initial uniform density value ρ ' 0.4ρ0

(fig. 5a) and the initial asymmetry I = 0.5 (fig. 5b). The
drive to higher-density regions is clearly different for neu-
trons and protons: at the end of the dynamical clustering
mechanism we have very different asymmetries in the liq-
uid and gas phases (see the panel at 250 fm/c in fig. 5b).

It was shown in refs. [8,9,20], on the basis of ther-
modynamics, that the two phases should have different
asymmetries, namely, Igas > Iliquid, and actually a pure
neutron gas was predicted at zero temperature if the initial
global asymmetry is large enough (I > 0.4) [20]. Here we
are studying this chemical effect in a non-equilibrium clus-
tering process, on very short time scales, and we confirm
the predictions of a linear response approach discussed
before.

We can directly check the important result on the
unique nature of the most unstable mode, independent
of whether we start from a mechanical or from a chem-
ical instability region. The isospin distillation dynam-
ics presented in fig. 5 refers to the initial conditions of
T = 5MeV, average density ρ = 0.06 fm−3 and asymme-
try I = 0.5, i.e. we start from a point well inside the me-
chanical instability region of the used EOS, see fig. 1(b).
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Fig. 5. Time evolution of neutron (thick lines) and proton (thin lines) abundances (a) and of asymmetry (b) in different density
bins. The calculation refers to the case of T = 5MeV, with initial average density ρ = 0.06 fm−3 and asymmetry I = 0.5 (see
the bottom left panel). The figure is taken from [12].

Fig. 6. Same calculation as in fig. 5 but with initial average density ρ = 0.09 fm−3, inside the chemical instability region. The
figure is taken from [26].

We can repeat the calculation at the same temperature
and initial asymmetry, but starting from an initial average
density ρ = 0.09 fm−3, i.e. inside the chemical instability
region of fig. 1(b). The results for the isospin distillation
dynamics are shown in fig. 6. The trend is the same as
in the previous fig. 5. This nicely shows the uniqueness of
the unstable modes in the spinodal instability region, as
discussed in detail in the previous subsection. Such result
is due to gross properties of the n/p interaction, thus it
should be not dependent on the use of a particular effective
force. This has been clearly shown recently in the linear
response frame [15], and in full transport simulations [27].

As intuitively expected, and as confirmed by the RPA
analysis (see [12]), the isospin distillation effect becomes
more important when increasing the initial asymmetry

of the system. At the same time, the instability growth
rates become smaller for the more asymmetric systems,
see fig. 4.

Moreover, it is possible to observe a rather smooth
and continuous transition from the trend observed at
ρ = 0.06 fm−3 (mechanical unstable region) to the trend
observed at ρ = 0.09 fm−3 (chemical unstable region), thus
indicating that there is no qualitative change between the
two kinds of instabilities. In fact they actually correspond
to the same mechanism, the amplification of isoscalar-
like fluctuations, with a significant chemical component
(change of the concentration).

The conclusion is that the fast spinodal decomposition
mechanism in neutron-rich matter will dynamically form
more symmetric fragments surrounded by a less symmet-
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ric gas. Some recent experimental observations from frag-
mentation reactions with neutron-rich nuclei at the Fermi
energies seem to be in agreement with this result on the
fragment isotopic content: nearly symmetric intermediate
mass fragments (IMF) have been detected in connection
to very neutron-rich light ions [13,14].

4 From bulk to neck fragmentation

4.1 Multifragmentation

Since dynamical instabilities are playing an essential role
in the reaction dynamics at Fermi energies it is essential
to employ a stochastic transport theory. An approach has
been adopted based on microscopic transport equations
of Boltzmann-Nordheim-Vlasov (BNV) type [28,32–35]
where asymmetry effects are suitably accounted for [36,37]
and the dynamics of fluctuations is included [38,39].

The transport equations, with Pauli blocking consis-
tently evaluated, are integrated following a test particle
evolution on a lattice [35,40,41]. A parametrization of free
NN cross-sections is used, with isospin, energy and angu-
lar dependence. The same symmetry term is utilized even
in the initialization, i.e. in the ground-state construction
of two colliding nuclei.

In particular, we report on a study of the 50AMeV
collisions of the systems 124Sn + 124Sn 112Sn + 112Sn and
124Sn + 112Sn, [42], where data are available from NSCL-
MSU experiments for fragment production. One can iden-
tify quite generally three main stages of the collision, as
observed also from the density contour plot of a typical
event at b = 2 fm displayed in fig. 7: 1) in the early com-
pression stage, during the first 40–50 fm/c, the density in
the central region can reach values around 1.2–1.3 nor-
mal density; 2) the expansion phase, up to 110–120 fm/c,
brings the system to a low-density state. The physical con-
ditions of density and temperature reached during this
stage correspond to an unstable nuclear-matter phase;
3) in the further expansion fragmentation is observed.

According to stochastic mean-field simulations, the
fragmentation mechanism can be understood in terms of
the growth of density fluctuations in the presence of in-
stabilities. The volume instabilities have time to develop
through spinodal decomposition leading to the formation
of a liquid phase in the fragments and a gas of nucle-
ons and light clusters. As seen in the figure, the fragment
formation process typically takes place up to a freeze-out
time (around 260–280 fm/c). This time is well defined in
the simulations since it is the time of saturation of the av-
erage number of excited primary fragments. The clusters
are rather far apart with a negligible nuclear interaction
left among them.

Guided by the density contour plots we can investigate
the behaviour of some characteristic quantities which give
information on the isospin dynamics in fragment forma-
tion. In fig. 8, we report as a function of time:

(a) The mass A in the liquid phase (solid line and dots)
and gas phase (solid line and squares).

Fig. 7. Central b = 2 fm 124Sn + 124Sn collision at 50AMeV:
time evolution of the nucleon density projected on the reac-
tion plane: approaching, compression and expansion phases.
The times are written on each figure. The iso-density lines are
plotted every 0.02 fm−3 starting from 0.02 fm−3. The figure is
taken from [42].

(b) The asymmetry parameter I = (N − Z)/(N + Z)
in the gas “central” (solid line and squares), gas to-
tal (dashed+squares), liquid “central” (solid+circles) and
IMFs (clusters with 3 < Z < 15, stars). The horizon-
tal line indicates the initial average asymmetry. “Central”
means a box of linear dimension 20 fm around the center
of mass of the total system.

(c) The mean fragment multiplicity Z ≥ 3 whose sat-
uration defines the freeze-out time and configuration.

We also show some properties of the “primary” frag-
ments in the freeze-out configuration:

(d) The charge distribution probability P(Z),

(e) The average asymmetry distribution Iav(Z) and

(f) The fragment multiplicity distribution P (N) (nor-
malized to 1).

For 124Sn + 124Sn we notice a neutron-dominated pre-
equilibrium particle emission during the first 50 fm/c. The
liquid phase becomes more symmetric during the com-
pression and expansion. From the beginning of the frag-
ment formation phase of the evolution, between 110 and
280 fm/c, we remark the peculiar trends of the liquid and
gas phase asymmetry. In the “central region” the liquid
asymmetry decreases while an isospin burst of the gas
phase is observed. This behaviour is consistent with the
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Fig. 8. The collision 124Sn + 124Sn at b = 2 fm: time evolution
(left) and freeze-out properties (right), ASY-STIFF EOS. The
figure is taken from [42].

kinetic spinodal mechanism in dilute asymmetric nuclear
matter leading to the isospin distillation between the liq-
uid and the gas phase.

The effects of this process are clearly seen in the IMF
isospin content, in both cases lower than at the beginning
of the spinodal decomposition, fig. 8(e). Opposite trends
for fragments with charge above and below Z ≈ 15 can
be observed. For heavier products the average asymmetry
increases with the charge, a Coulomb related effect. How-
ever, the asymmetry rises again for lighter fragments. This
can be a result of the differences in density and isospin be-
tween the regions in which the fragments grow, due to the
fact that not all of them form simultaneously, as shown
in the density contour plot. Let us also observe that the
charge distribution of primary fragments has a rapidly de-
creasing trend, typical of a multifragmentation process.

4.2 Neck fragmentation

Summarizing the main experimental observations, we enu-
merate the following features of a “dynamical” IMF pro-
duction mechanism in semi-peripheral collisions:

1. An enhanced emission is localized in the mid-
rapidity region, intermediate between projectile-like frag-
ment (PLF) and target-like fragments (TLF) sources, es-
pecially for IMFs with charge Z from 3 to 15 units.

2. The IMFs relative velocity distributions with respect
to PLF (or TLF) cannot be explained in terms of a pure

Fig. 9. 124Sn + 124Sn collision at 50AMeV: time evolution
of the nucleon density projected on the reaction plane. Left
column: b = 4 fm. Right column: b = 6 fm. The figure is taken
from [42].

Coulomb repulsion following a statistical decay. A high
degree of decoupling from the PLF (TLF) is also invoked.

3. Anisotropic IMFs angular distributions are indicat-
ing preferential emission directions and an alignment ten-
dency.

4. For charge asymmetric systems the light particles
and IMF emissions keep track of a neutron enrichment
process that takes place in the neck region.

A fully consistent physical picture of the processes that
can reproduce observed characteristics is still a matter of
debate and several physical phenomena can be envisaged,
ranging from the formation of a transient neck-like struc-
ture that would break-up due to Rayleigh instabilities or
through a fission-like process, to the statistical decay of
a hot source, triggered by the proximity with PLF and
TLF [43–45].

The development of a neck structure in the overlap
region of the two colliding nuclei is evidenced in fig. 9.
During the interaction time this zone heats and expands
but remains in contact with the denser and colder regions
of PLF and/or TLF. The surface/volume instabilities of
a cylindrically shaped neck region and the fast leading
motion of the PLF and TLF will play an important role
in the fragmentation dynamics. We notice the superim-
posed motion of the PL and TL pre-fragments linked to
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Fig. 10. The probability distribution of scission-to-scission
time in the neck fragmentation for impact parameters from 5
to 8 fm. 124Sn + 64Ni at 35AMeV and asystiff EOS. The figure
is taken from [26].

the formation of a neck-like structure with a fast-changing
geometry.

At the freeze-out time, with the neck rupture at about
140 fm/c, intermediate mass fragments are produced in
the mid-rapidity zone. In some events fragments form very
early while, in others, they can remain for a longer time
attached to the leading PLFs or TLFs. A transition behav-
ior between multifragmentation and neck fragmentation is
observed at b = 4 fm.

From the simulations we can extract an interesting in-
formation on the time scale of the Neck-IMF production.
In fig. 10 we show, for different impact parameters, the
probability distribution of the time interval between the
instant of the first separation of the dinuclear system and
the moment when a Neck-IMF is identified (scission-to-
scission time). A large part of the Neck-IMFs are formed
in short time intervals, within 50 fm/c.

Finally, we would like to remark that the neck fragmen-
tation shows a dependence on the nucleon-nucleon cross-
sections and the EOS compressibility. The latter point is
particularly interesting since it seems to indicate the rele-
vance of volume instabilities even for the dynamics of the
neck. This appears consistent with the short time scales
shown before, see also the discussion in ref. [46].

5 Conclusions

In this work we investigated several properties of the
asymmetric nuclear matter in the low-density region of
phase diagram. The thermodynamical and dynamical
analysis was based on Landau theory of Fermi liquid ex-
tended to binary systems. It was concluded that:

– at low densities, of interest for the nuclear liquid-gas
phase transition, the asymmetric nuclear matter can

be characterized by a unique spinodal region, defined
by the instability against isoscalar-like fluctuations; in-
side this we can identify the region where the system
manifests mechanical instability and chemical instabil-
ity, respectively;

– the physical meaning of thermodynamical chemical
and mechanical instabilities should be related to the
relative strengths of the interactions among the differ-
ent species.

– everywhere in this density region the system is sta-
ble against the isovector-like fluctuations related to a
tendency for species separation.

– at larger initial asymmetries the development of the
spinodal instabilities is slower and a depletion of the
maximum of the growth rate takes place. A decrease
of the wave number corresponding to the maximum
growth rate was deduced. Also the Coulomb force
causes an overall decrease of growth rates. In this case
the wave vector should exceed a threshold value in or-
der to observe the instabilities.

– during the time development of the spinodal instabil-
ities in ANM the fragment formation is accompanied
by the isospin distillation leading to a more symmetric
liquid phase and more neutron-rich gas phase.

We have made a connection of these features with
isospin transport properties in simulations of fragmenta-
tion reactions based on stochastic BNV transport models.
The presence and the role of the instabilities along the
reaction dynamics in bulk fragmentation and neck frag-
mentation were discussed.

The results discussed here refer to the formation pro-
cesses of primary fragments. i.e. at the freeze-out time.
We explored the possibility that IMF appear as a result
of a mechanism that initially started as spinodal decompo-
sition triggered by isoscalar-like instabilities. These frag-
ments are excited, and the subsequent statistical decay
will certainly modify the signal. Therefore, it is important
to search for various observables still keeping informations
about the early stages of the fragments formation, for ex-
ample those related to the kinematical properties (velocity
distributions, angular distributions) and correlations be-
tween these observables and isospin content.

Moreover, the neck dynamics and corresponding
isospin transport shows distinctive features related to the
interplay between volume and surface instabilities. These
should be better clarified in the future since they can con-
tribute to a proper understanding of intermediate mass
fragment production at Fermi energies.

V.B. acknowledges support of the Romanian Ministry for Edu-
cation and Research for this work under the contract No. CEx-
05-D10-02.
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